95 research outputs found

    Surface EMG-Based Inter-Session/Inter-Subject Gesture Recognition by Leveraging Lightweight All-ConvNet and Transfer Learning

    Full text link
    Gesture recognition using low-resolution instantaneous HD-sEMG images opens up new avenues for the development of more fluid and natural muscle-computer interfaces. However, the data variability between inter-session and inter-subject scenarios presents a great challenge. The existing approaches employed very large and complex deep ConvNet or 2SRNN-based domain adaptation methods to approximate the distribution shift caused by these inter-session and inter-subject data variability. Hence, these methods also require learning over millions of training parameters and a large pre-trained and target domain dataset in both the pre-training and adaptation stages. As a result, it makes high-end resource-bounded and computationally very expensive for deployment in real-time applications. To overcome this problem, we propose a lightweight All-ConvNet+TL model that leverages lightweight All-ConvNet and transfer learning (TL) for the enhancement of inter-session and inter-subject gesture recognition performance. The All-ConvNet+TL model consists solely of convolutional layers, a simple yet efficient framework for learning invariant and discriminative representations to address the distribution shifts caused by inter-session and inter-subject data variability. Experiments on four datasets demonstrate that our proposed methods outperform the most complex existing approaches by a large margin and achieve state-of-the-art results on inter-session and inter-subject scenarios and perform on par or competitively on intra-session gesture recognition. These performance gaps increase even more when a tiny amount (e.g., a single trial) of data is available on the target domain for adaptation. These outstanding experimental results provide evidence that the current state-of-the-art models may be overparameterized for sEMG-based inter-session and inter-subject gesture recognition tasks

    Droit des contrats et pratiques contractuelles en droit romain et dans la coutume de Paris : aspects juridiques de la location immobilière à Montréal aux XVIIIe et XIXe siècles

    Get PDF
    Jusqu'à maintenant, les historiens ont insisté sur l'importance de la Coutume de Paris comme fondement juridique du Canada préindustriel. Ayant concentré leurs efforts sur le droit régissant la tenure des terres, les régimes matrimoniaux et les successions, qui relèvent principalement de la Coutume de Paris, les historiens, mais aussi les juristes, ont manifesté peu d'intérêt pour le droit des contrats, et pour le droit romain qui le régit. Par l'analyse de contrats de location immobilière et des droits et devoirs des propriétaires et des locataires reconnus par les traités de droit et retracés dans les clauses contractuelles, l'auteur veut montrer l'importance de réhabiliter le droit romain pour mieux comprendre les fondements du droit au Canada. L'auteur s'appuie sur les commentateurs de la Coutume de Paris et du droit romain ainsi que sur les clauses contenues dans les actes de location passés devant notaire au XVIIIe et dans le premier quart du XIXe siècle.Until now, historians have emphasized the importance of the Coutume de Paris as the foundation for law in preindustrial Canada. Based on an analysis of realty rental contracts and owners' and tenants' rights and obligations as observed in contractual clauses, the author seeks to rehabilitate Roman Law as a means for a better understanding of the underpinnings of law in Canada, as well as on clauses contained in rental leases notarized in the XVIIIth and first quarter of the XIX,th centuries

    Efficient procedure to remove ECG from sEMG with limited deteriorations: Extraction, quasi-periodic detection and cancellation

    Get PDF
    An efficient method is presented to remove ECG from EMG with limited deterioration. The ECG pulses are first localized and then remove only where they have been detected. A combination of ICA and DWT is first used to extract ECG information. Then, the pulses positions are detected with an original algorithm based on FFT which takes advantage of the quasi-periodic nature of the ECG. The proposed method accurately detects pulses positions and efficiently removes the ECG from EMG signals even when both signals are strongly overlapped. The interpretations of the surface electromyography (sEMG) signals from the trunk region are strongly distorted by the heart activity (ECG), especially in case of low-amplitude EMG responses analyses. Many methods have been investigated to resolve this nontrivial problem, by using advanced data processing on the overall sEMG recorded signal. However, if they reduce ECG artifacts, those cancellation methods also deteriorate noiseless parts of the signal. This work proposes an original ECG cancellation method designed to limit the deterioration of sEMG information. To do that, the proposed techniques does not directly attempt to remove the ECG, but is based on two main steps: the localization of ECG and the cancellation of ECG but only where heart pulses have been detected. The phase of localization efficiently extracts the ECG contribution by combining the discrete wavelet transforms (DWT) and the method of independent component analysis (ICA). And finally, this phase takes advantage of quasi-periodic properties of ECG signals to accurately detect pulses localization with an original algorithm based on the fast Fourier transform (FFT). Intensive simulations were achieved in terms of relative errors, coherence and accuracy for different levels of ECG interference. And the correlation coefficients computed from the paraspinal muscles EMG signals of 12 healthy participants were also used to evaluate the developed method. The results from simulation and real data demonstrate that the proposed method accurately detects pulses positions and efficiently removes the ECG from EMG signals, even when both signals are strongly overlapped, and greatly limits the deterioration of the EMG

    Detection method of flexion relaxation phenomenon based on wavelets for patients with low back pain

    Get PDF
    The flexion relaxation phenomenon (FRP) can be defined as a reduction or silence of myoelectric activity of the lumbar erector spinae muscle during full trunk flexion. It is typically absent in patients with chronic low back pain (LBP). Before any broad clinical utilization of this neuromuscular response can be made, effective, standardized, and accurate methods of identifying FRP limits are needed. However, this phenomenon is clearly more difficult to detect for LBP patients than for healthy patients. The main goal of this study is to develop an automated method based on wavelet transformation that would improve time point limits detection of surface electromyography signals of the FRP in case of LBP patients. Conventional visual identification and proposed automated methods of time point limits detection of relaxation phase were compared on experimental data using criteria of accuracy and repeatability based on physiological properties. The evaluation demonstrates that the use of wavelet transform (WT) yields better results than methods without wavelet decomposition. Furthermore, methods based on wavelet per packet transform are more effective than algorithms employing discrete WT. Compared to visual detection, in addition to demonstrating an obvious saving of time, the use of wavelet per packet transform improves the accuracy and repeatability in the detection of the FRP limits. These results clearly highlight the value of the proposed technique in identifying onset and offset of the flexion relaxation response in LBP subjects

    Abnormal insulin-like growth factor 1 signaling in human osteoarthritic subchondral bone osteoblasts

    Get PDF
    Insulin-like growth factor (IGF)-1 is a key factor in bone homeostasis and could be involved in bone tissue sclerosis as observed in osteoarthritis (OA). Here, we compare the key signaling pathways triggered in response to IGF-1 stimulation between normal and OA osteoblasts (Obs). Primary Obs were prepared from the subchondral bone of tibial plateaus of OA patients undergoing knee replacement or from normal individuals at autopsy. Phenotypic characterization of Obs was evaluated with alkaline phosphatase and osteocalcin release. The effect of IGF-1 on cell proliferation, alkaline phosphatase and collagen synthesis was evaluated in the presence or not of 50 ng/ml IGF-1, whereas signaling was studied with proteins separated by SDS-PAGE before western blot analysis. We also used immunoprecipitation followed by western blot analysis to detect interactions between key IGF-1 signaling elements. IGF-1 receptor (IGF-1R), Shc, Grb2, insulin receptor substrate (IRS)-1, and p42/44 mitogen-activated protein kinase (MAPK) levels were similar in normal and OA Obs in the presence or absence of IGF-1. After IGF-1 stimulation, the phosphorylation of IGF-1R in normal and OA Obs was similar; however, the phosphorylation of IRS-1 was reduced in OA Ob. In addition, the PI3K pathway was activated similarly in normal and OA Obs while that for p42/44 MAPK was higher in OA Obs compared to normal. p42/44 MAPK can be triggered via an IRS-1/Syp or Grb2/Shc interaction. Interestingly, Syp was poorly phosphorylated under basal conditions in normal Obs and was rapidly phosphorylated upon IGF-1 stimulation, yet Syp showed a poor interaction with IRS-1. In contrast, Syp was highly phosphorylated in OA Obs and its interaction with IRS-1 was very strong initially, yet rapidly dropped with IGF-1 treatments. The interaction of Grb2 with IRS-1 progressively increased in response to IGF-1 in OA Obs whereas this was absent in normal Ob. IGF-1 stimulation altered alkaline phosphatase in Ob, an effect reduced in the presence of PD98059, an inhibitor of p42/44 MAPK signaling, whereas neither IGF-1 nor PD98059 had any significant effect on collagen synthesis. In contrast, cell proliferation was higher in OA Obs compared to normal under basal conditions, and IGF-1 stimulated more cell proliferation in OA Obs than in normal Ob, an effect totally dependent on p42/44 MAPK activiy. The altered response of OA Obs to IGF-1 may be due to abnormal IGF-1 signaling in these cells. This is mostly linked with abnormal IRS-1/Syp and IRS-1/Grb2 interaction in these cells
    • …
    corecore